Wide Field Infrared Survey Telescope (WFIRST)

WFIRST is a space telescope that is designed to provide data that might settle some of the most enduring mysteries of the universe – dark energy, dark matter, exoplanets and undiscovered galaxies.

WFIRST Mission

When it launches in the mid-2020s on a mission planned for five years, WFIRST will survey wide areas of space with a field of view much larger than the Hubble Space Telescope or the James Webb Space Telescope. Those predecessors take detailed views of smaller areas of space, more like a zoomed-in view to WFIRST’s panoramic.

WFIRST will observe billions of galaxies, detailing supernovae and other cosmic phenomena. The data will fuel discoveries on dark energy and dark matter, two mysteries of the universe that science cannot fully explain. The telescope will also study exoplanets – planets outside of our solar system – with unprecedented detail. WFIRST will monitor 100 million stars for hundreds of days and 
is expected to discover about 2,500 new planets. Included in that number are rocky planets in regions that may support the existence of liquid water.

L3Harris Role 

L3Harris is responsible for some of the most important tasks to create the telescope, including refinishing the primary mirror. L3Harris 
is creating hardware to accommodate and interact with the two instruments on the telescope, the Wide Field Instrument for the mission’s core science goals and the Coronagraph Instrument for future exoplanet direct-imaging technology development.

L3Harris also conducted the successful test of the primary mirror to ensure it functions in the very cold temperatures found in space. The telescope was initially constructed for another mission, but was transferred to NASA. L3Harris has worked with NASA and other partners to turn the hardware into a powerful astrophysics and universe-exploration tool. Using an existing telescope reduced overall mission cost and schedule risk.

WFIRST and other space telescopes

  • WFIRST has a field of view 100 times that of Hubble at the same depth and resolution.
  • WFIRST mirror is the same diameter as Hubble, but is only about one fourth the mass.
  • Ideally, WFIRST would co-fly with the James Webb Space Telescope (JWST) to couple the wide survey of WFIRST with the high-angular resolution and sensitivity of JWST. This would exponentially increase the scientific return.